

Processing of Multispectral Imagery (MSI) for Cultural Heritage using ENVI

Roger L. Easton, Jr.
Chester F. Carlson Center for Imaging Science
Rochester Institute of Technology
Rochester, New York, USA, 14623-5604

easton@cis.rit.edu

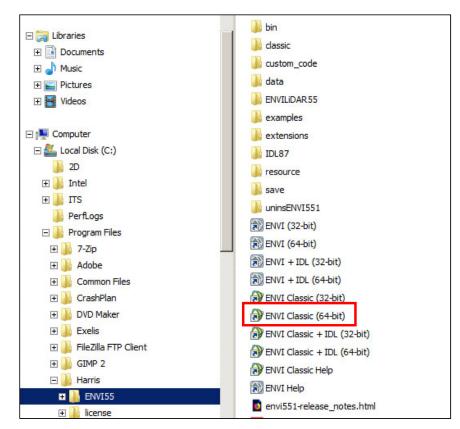
1-585-475-5969

Goal of MSI Image Processing

- Construct "combinations" of input bands that enhance the feature(s) of interest
- Combinations may be:
 - > Different bands in RGB-color image ("pseudocolor rendering")
 - > Arithmetic weighted sums or differences
 - □ Sums attenuate features that change over bands ("integrals"), and therefore enhance features that are constant over bands ("derivatives")
 - □ Differences attenuate features that are constant over bands, enhance features that vary over bands

Combinations may be determined by:

- Trial and error
- Statistical calculations, customized for each leaf


Image Processing Software Tools

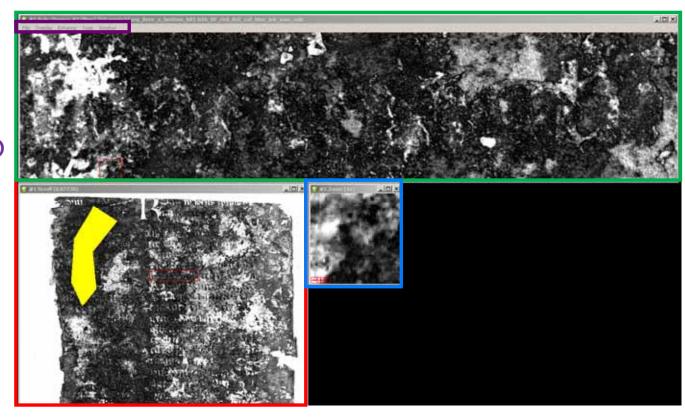
- ENVI™, now by L3HARRIS™ GEOSPATIAL SOLUTIONS
- Adobe Photoshop™
- Matlab
 - > https://www.mathworks.com/products/matlab.html
- ImageJ
 - https://imagej.nih.gov/ij/
- Hoku
 - Keith Knox (knox@cis.rit.edu)

Image Processing in ENVI™: Select GUI

- Shortcuts are listed in ENVI folder
- We're using "ENVI Classic"

ENVI™ "Classic" GUI

• Main Menu, with pulldown submenus

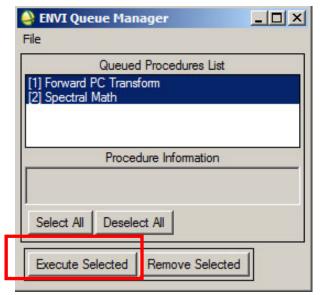


- Submenus of most importance to us:
 - > File
 - > Basic Tools
 - Spectral Math
 - □ Region of Interest
 - □ Preprocessing
 - > Transform
 - □ Principal Components
 - □ Independent Components
 - □ MNF
 - > Filter
 - Convolutions and Morphology
 - > Spectrum
 - □ SAM Target Finder with BandMax

Image Display in ENVI™ "Classic" GUI

- 3 Image "Windows," which may be rescaled as desired
 - "Scroll" (full-frame image scaled to fit)
 - "Image" (subset of "Scroll,"
 with secondary menu bar)
 - > "Zoom" (subset of "Image")
- Secondary Menu Bar
 - > File
 - save image as TIFF
 - > Enhance
 - □ 18 options to change rendering
 - > Tools
 - □ Profiles
 - Color Mapping
 - Cursor Location/Value

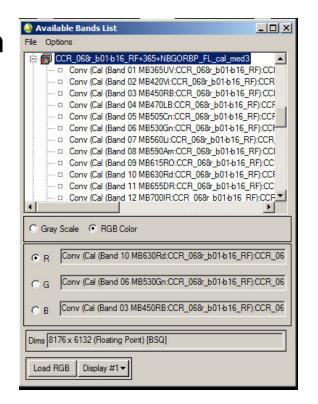
Sequence of Tasks in ENVI™


- 1. Create image cube(s) from collected data, create data format $f[n, m, \lambda_n]$
 - > May be useful to create different image cubes for reflective, fluorescence, and transmissive images
 - > Calibrated differently and may be combined subsequently for processing that includes images from multiple collection modes.
- 2. Edit image header to include filenames AND wavelengths
- 3. Use reference standards to calibrate gray values
- 4. Display image(s), using various rendering options to look for features of interest and/or select bands that show features most clearly or prominently.
 - > ENVI can render "black & white" or 3-band "color" or "pseudocolor"
- 5. Export images to TIFF or JPEG format (if needed).
- 6. Process data using one or more built-in programs
 - "Spectral Angle Mapping" (SAM)
 - "Principal Component Analysis" (PCA)
 - "Independent Component Analysis" (ICA)
- 7. Render and export processed images as 8-bit TIFF or JPEG (monochrome) or as 24-bit RGB or pseudocolor.
- 8. Loop to 6!!

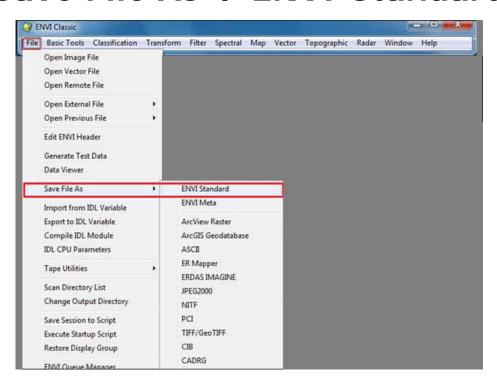
Sidebar: ENVI™ Queue Manager

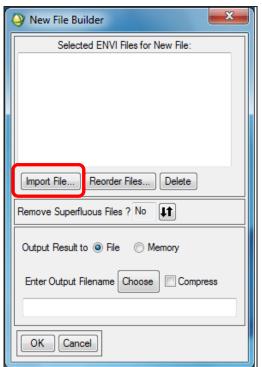
- Means to set up batches of multiple operations
- Cannot set up "sequential" batches
 - > e.g., output of one operation in "Queue" becomes input for next operation

"File" → "ENVI Queue Manager"

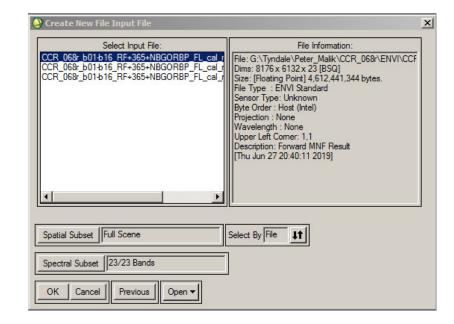


Task #1: Make Image "Cube"

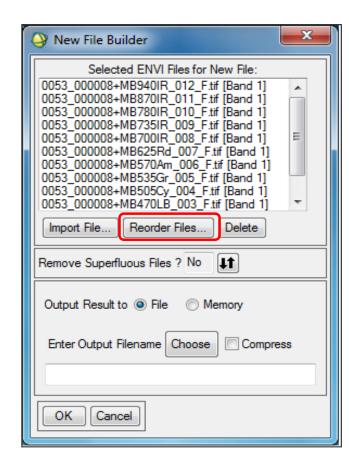

- File → Open Image File
- Select the image bands to be included in the cube and then click: Open
- Files will show up in window Available Bands List.

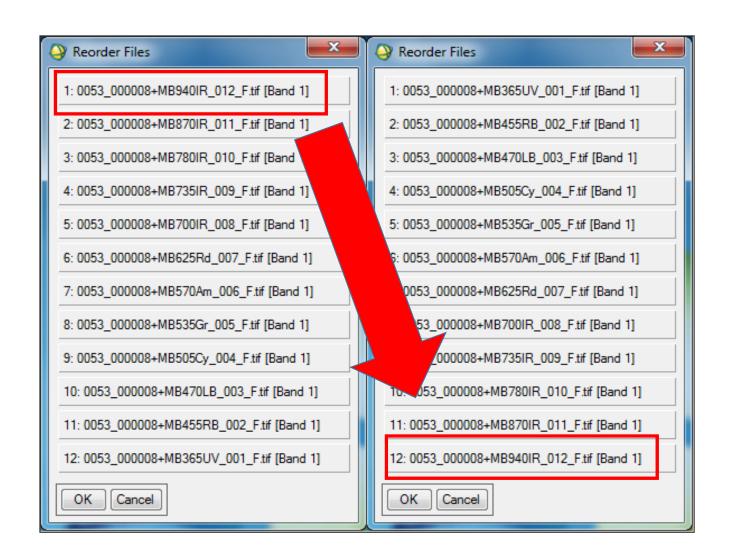

Saving Cube

File → Save File As → ENVI Standard



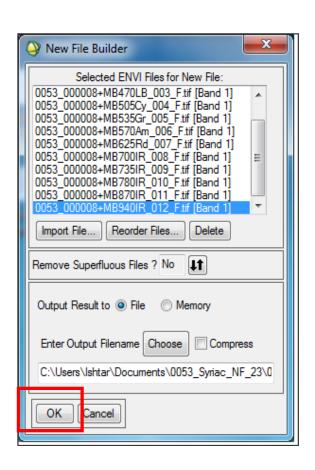
• New File Builder will be displayed, click on: Import File

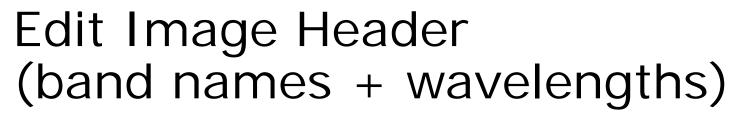

- Create New File Input File window
 - Click to select files to include in the image cube
 - ➤ If all files on list need be selected, click on first name, hold down SHIFT key when clicking last name
- click on: OK



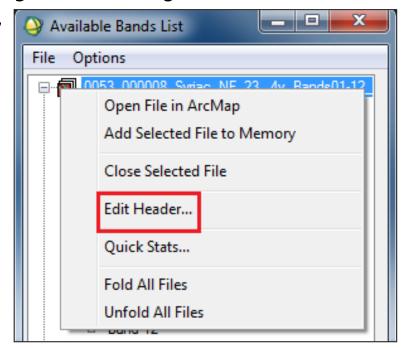
To Reorder File Names in *Builder*:

- Click on: Reorder Files
- Click and drag OR click "center" mouse button (or wheel) to reverse sequence
- Click **OK**

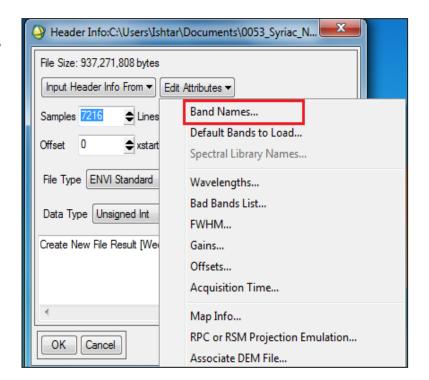




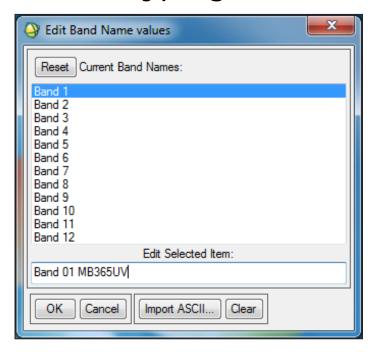
- **ENVI** returns to *New File Builder* window
- In section *Enter Output Filename*, type or choose desired **filename**
 - ➤ I often use shelfmark + leaf number + suffix indicating nature of data ("-RF" for "reflective, "-FL" for fluorescence, or "-TX" for transmissive)
 - > I generally choose NO filename extension
- click: Open
- To save new cube file click: OK


- Create New File will be displayed
 - progress bar will give rough estimate of how much time is required for the process to finish
 - □ (HINT: it's longer than you want it to be);-)

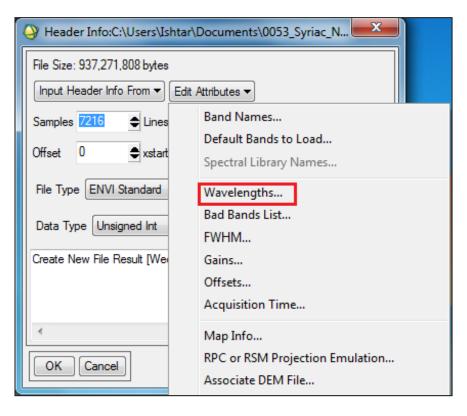
 In the window Available Bands List right click on name of new cube to display directory


• select: **Edit Header**

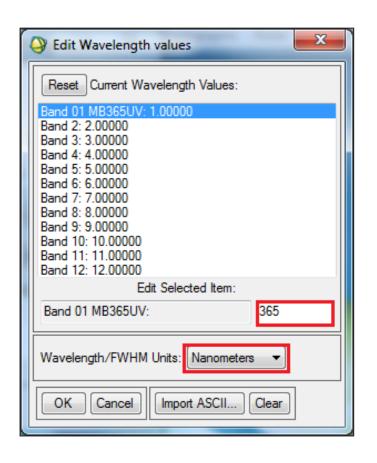
window *Header Info* is displayed


• Edit attributes → Band Names

window *Edit Band Name values* is displayed



- Type band names in Edit Selected Item
- After typing all new band names click on: OK


reflectance or transmissive bands, click

on: Edit Attributes -> Wavelengths

- **ENVI** will display *Edit* Wavelength values window
 - > select band in Edit Selected Item:
 - > type wavelength value
 - ➤ In section Wavelength/FWHM Units: select Nanometers
 - > Click on: OK
- display returns to Header Info
- click on: OK

ENVI

```
description = {
Create New File Result [Mon May 24 11:49:39 2019]}
samples = 8176
lines = 6132
bands = 12
header offset = 0
file type = ENVI Standard
data type = 12
interleave = bsq
sensor type = Unknown
byte order = 0
wavelength units = Unknown
```

description = { Create New File Result [Mon May 24 11:49:39 2019]} samples = 8176 lines = 6132 bands = 12 header offset = 0 file type = **ENVI** Standard data type = 12 interleave = bsq sensor type = Unknown byte order = 0

wavelength units = Unknown

ENVI

```
description = {
Create New File Result [Mon May 24 11:49:39
2019]}
samples = 8176
lines = 6132
bands = 12
header offset = 0
file type = ENVI Standard
data type = 12
interleave = bsq
sensor type = Unknown
byte order = 0
wavelength units = nanometers
wavelength = {
365.000000, 450.000000, 465.000000,
505.000000, 535.000000, 592.000000,
625.000000, 638.000000, 730.000000,
780.000000, 850.000000, 940.000000}
```


Close image cube file

- click on: File → Close All Files
 - > It is recommended to close all original image bands after creating cube to free up memory space
 - > Quickest way to do this is to close all files via

File → Close All Files

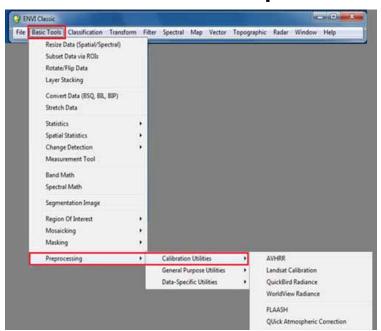
followed by

File → Open Image File

Calibrate Image Cube

select region of interest (RoI) used to evaluate statistics

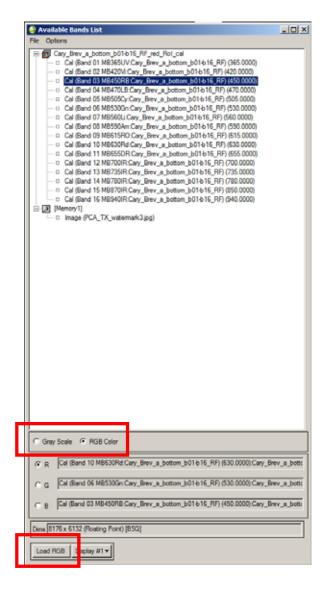
Basic Tools → Region of Interest → ROI Tool


- ENVI will display #1 ROI Tool window
- In tab: ROI Type select: Polygon
- To outline new Rol in Image window, click: New Region
 - > ROI window will list color of ROI to be outlined
 - > click on region number to highlight it
 - > Polygon, click around image window to create ROI
 - > right click to end selection.
- click on File → Save ROIs

Calibration:

• In main menu of ENVI Classic select:

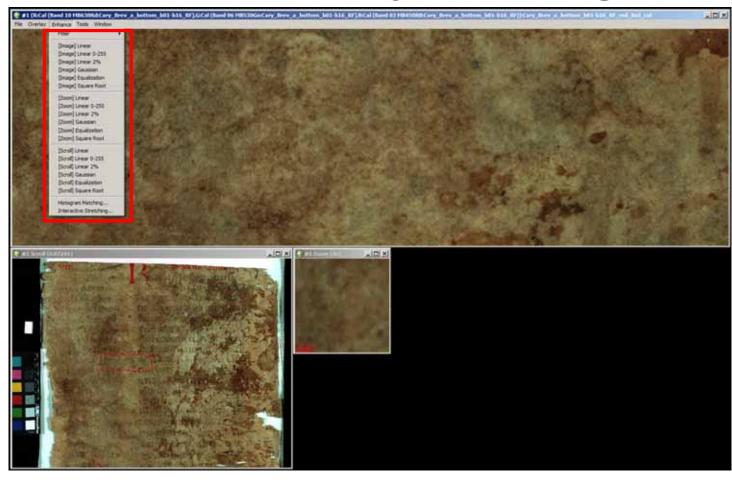
Basic Tools → Preprocessing → Calibration Utilities → Flat Field



Calibration (continued)

- window Calibration Input File will be displayed
- In section Select Input File: choose cube file to be calibrated
- display window Flat Field Calibration Parameters,
 highlight ROI to be used in section Select ROI for Calibration
- Enter Output Filename (add suffix ".cal")
- click: **OK**
- Calibration converts "16-bit integers" to "32-bit floating point numbers"
 - > DOUBLES the file size (from 100 megabytes / band to 200)

Display Images


Gray Scale or RGB

Enhance the Displayed Image

Enhance

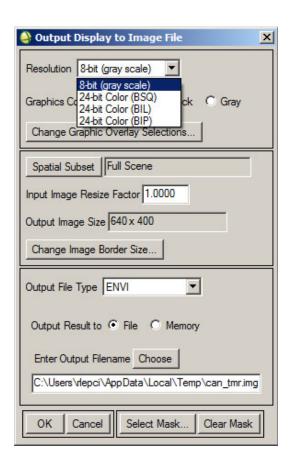
- Changes image based on statistics in one of the three windows
- Default is "[Scroll] Linear 2%"
 - > Looks at histogram (probability distribution) of entire image
 - > Throws out 2% each of "lightest" and "darkest" pixels
 - > Linear Stretch of remaining pixels
 - □ Darkest 2% become "black" in each displayed band
 - □ Lightest 2% become "white" in each displayed band
 - □ Other pixels are scaled in proportion

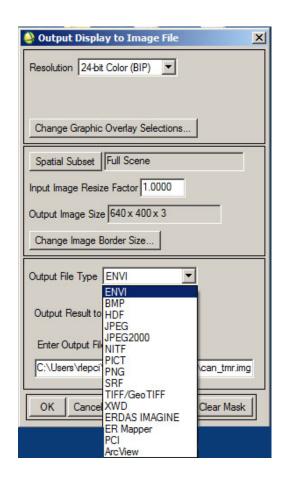
Display Enhancements

- Use [Zoom] options to scale to small region
 - > [Zoom] Linear 2%
 - > [Zoom] Gaussian (mean $\mu \rightarrow$ "127", μ +3 $\sigma \rightarrow$ 255, μ –3 $\sigma \rightarrow$ 0
 - > [Zoom] Square Root (stretches "darks", compresses "whites")
- Use [Image] options to scale to larger region

Export Image

- Converts floating-point file to 8-bits per channel
- Discards MUCH data ... do not expect to import back to ENVI


File → Save Image As → Image File

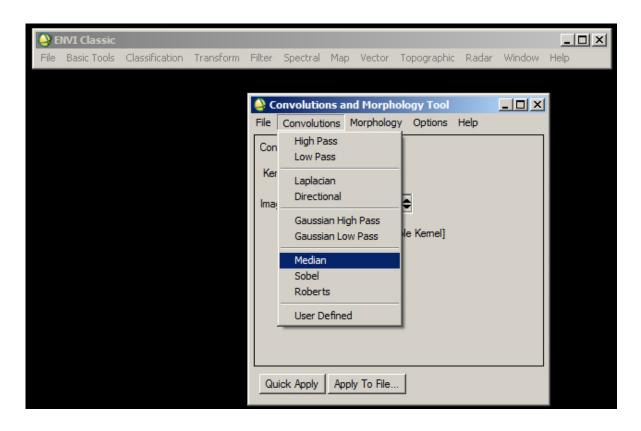

- window "Output Display to Image File"
 - > Select gray-scale "resolution" (8-bit gray or 24-bit color)
 - > Select format:

BSQ = "band-sequential" (optimal for accessing spatial)

BIP = "band interleaved by pixel" (optimal for accessing spectra)

BIL = "band-interleaved by line" (compromise)

Filtering


- Filter
 — Convolutions and Morphology
 - > Highpass
 - > Lowpass
 - □ "blurring" filter, attenuates "sharpness", used for "blur-and-divide" preprocessing to attenuate background variations
 - > Median
 - □ Useful for attenuating "salt-and-pepper" noise from fluorescence bands

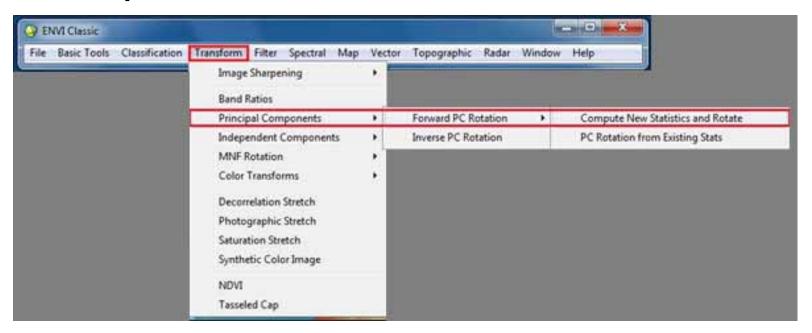
Filter → Convolutions and Morphology → Median

Median

Never used any size > 3 × 3

Lowpass

- FILTER → Convolutions and Morphology
- Convolutions → Low Pass
- Click on "up arrow" option for "Kernel Size"
 - > only odd numbers are available
 - > kernel must have well-specified "center" pixel
 - > Size > "stroke width", rule of thumb is 2x
- "Apply to File (and WAIT)



Divide (Spectral Math)

- Basic Tools → Spectral Math
- Enter Expression → "(float(S1))/(float(S2))"
- Click "Add to List"
- Click "OK"
- In "Variables to Spectra Pairing" window:
- Click on "Map Variable to Input File" (which brings up the "Spectral Math Input File" menu and which selects all bands of the file)
- Select file name of numerator for "S1" (original or median filtered)
- Click on "**\$2**"
- Click on "Map Variable to Input File"
- Select file name of denominator for "S2" (result of convolution)
- Click "OK"
- Select Name of Output File
- Click "OK"

Principal Component Analysis (PCA)

- Transform → Principal Components → Forward PC Rotation
- → Compute New Statistics and Rotate

PCA 2

- Window Principal Components Input File is displayed
 - > Select image cube to process from list
 - > Click **OK**
- Window Select Statistics Subset is displayed
 - ➤ In the section Calculate Stats On select:

ROI/EVF

- > In section Select ROI/EVF, select ROI to use
- > Click **OK**

PCA 3

- window Forward PC Parameters
 - > choose or type names of:
 - (1) **Output Stats Filename** (*.sta)
 - (2) Enter Output Filename, then click: OK
- window *Principal Components Rotation* is displayed
- Watch progress bar not move cup of coffee?